

TRansition paths to sUstainable legume-based systems in Europe

Grain legume research at NARIC Szeged

11th September 2018, Budapest

For the future of the Hungarian land

NEMZETI AGRÁRKUTATÁSI ÉS INNOVÁCIÓS KÖZPONT

National Agricultural Research and Innovation Centre

- Institutional background

TRUE

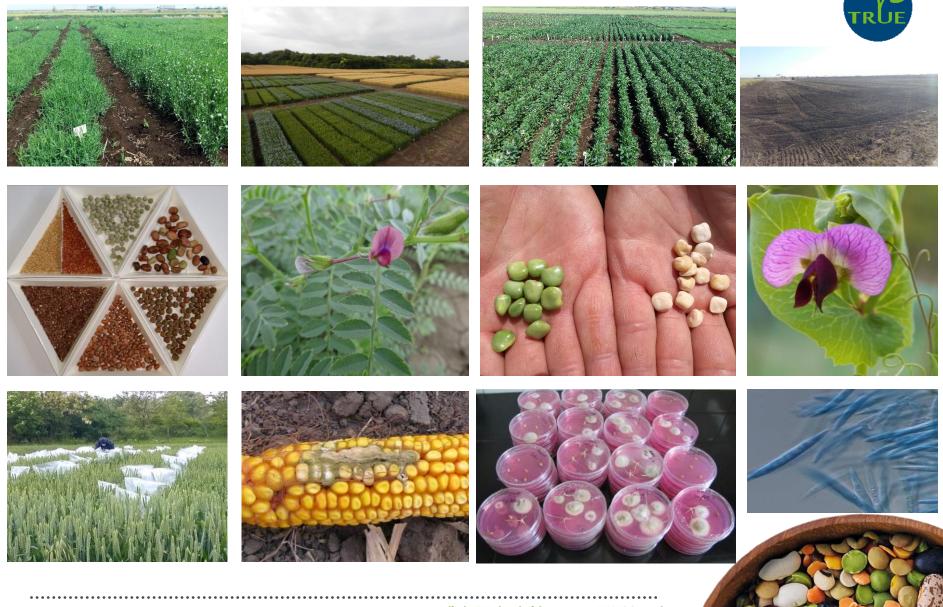
NAIK institutes and research departments:

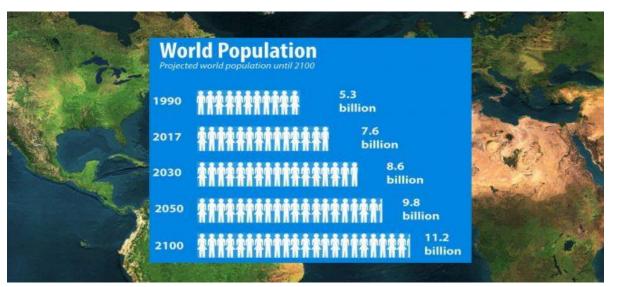
- •NAIK AKK Agro-Environmental Res. Inst.
- •NAIK ÁTK Res. Inst. for Animal Breeding, Nutrition and Meat Sci.
- •NAIK ERTI Forest Res. Inst.
- •NAIK ÉKI Food Science Res. Inst.
- •NAIK GYKI Fruitculture Res. Inst.
- •NAIK HAKI Res. Inst. for Fisheries and Aquaculture
- •NAIK MBK Agricultural Biotechnology Inst.
- •NAIK MGI Inst. of Agricultural Engineering
- •NAIK NÖKO Dep. of Field Crop Research, SZEGED
- •NAIK ÖVKI Res. Dep. of Irrigation and Water Management
- •NAIK SZBKI Res. Inst. for Viticulture and Oenology
- •NAIK ZÖKO Vegetable Crop Res. Dep.

NAIK companies:

- •Cereal Research Non-profit Ltd.
- •Hungarian Dairy Research Institute Ltd.
- •Hungarian Horticultural Propagation Material Non-profit Ltd.
- •Vegetable Production Research Institute Ltd.

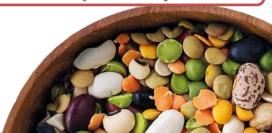
Department of Field Crop Research, Szeged


0.425 km


- Molecular
- Analytical
- Phytopathological

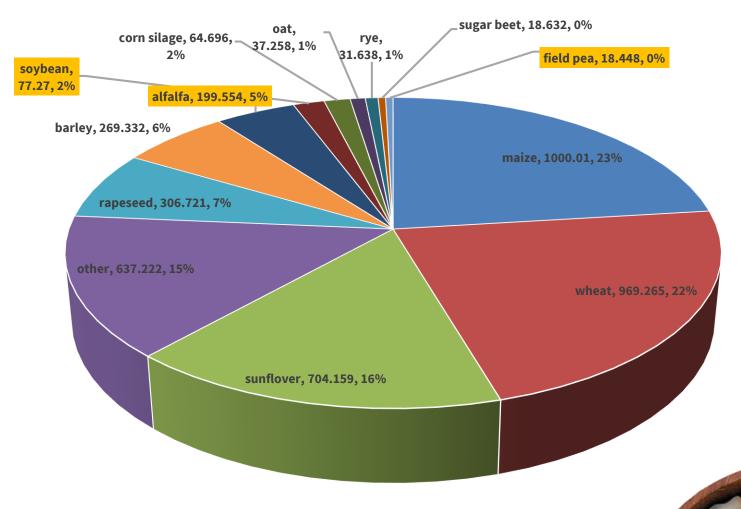
Main research projects

Agricultural Challenges 1. - Population and climate change



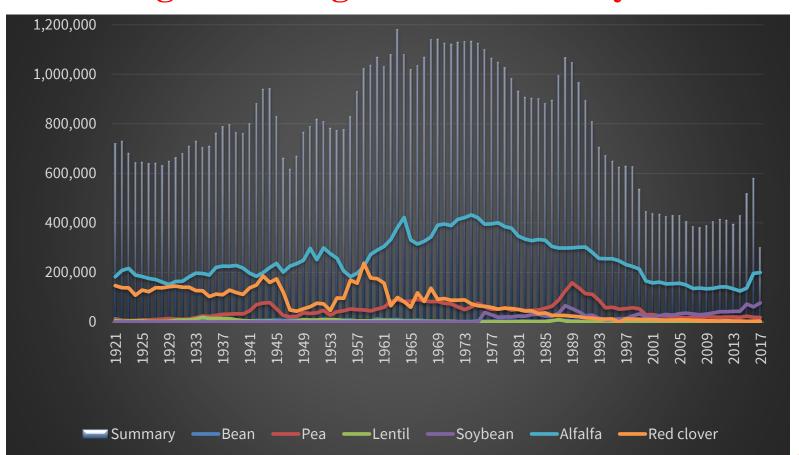
Warmer temperature

www.joemygod.com Increased frequency of extreme climatic events



Research challenges 2. - Crop rotation system

TRUE


Sowing area of main cultivars in 2018

Research challenges 2. - Crop rotation system

TRUE

Sowing area of legumes in last 100 years

MAIN GOALS

Crop rotation system again

Healthy food, alternative protein feed

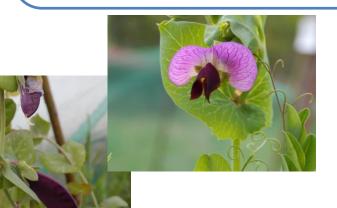
New cultivars

- Chickpea
- Field pea
- Faba bean
- (Soybean)

STEP 1

Collect genetic resources from genebanks and partner institutes

- Center for Plant Diversity, Tápiószele (field pea)
- USDA (chickpea, field pea, faba bean)
- KALRO, Kenya
- Hassan IV Morocco
- INRA


Number of collected genotypes:

Chickpea: 450

Field pea: 98

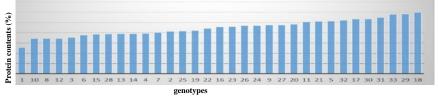
Faba bean: 128

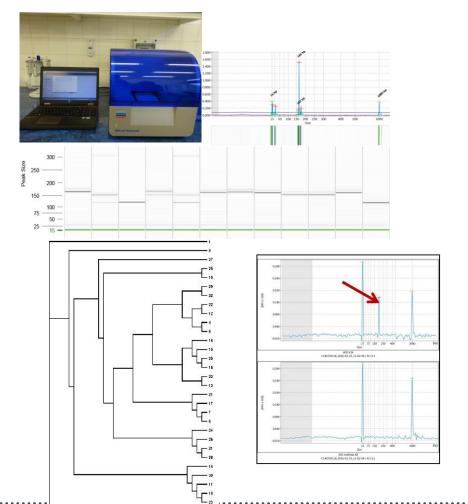
STEP 2 - on the field

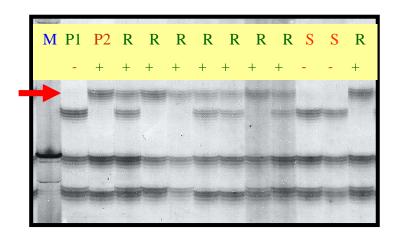
Check the adaptability and yield potential of them

	e II X	s better	i i i i i i i i i i i i i i i i i i i						
		√ Jr magn	zine fekete						
A	8	c	D	Ε	F	G	н		3
	836/2			6	34	13	21		
838	838/1	RCAT058181	Erbse mit purpumen Hülsen	2	- 4	-	4		
	038/2			7	33	-	33		
839	839/1	RCAT059744	Unrra /972/	14	66	16	50		
	839/2			46	200	49	151		
	839/3			65	285	74	211		
940	840/1	RCAT059745	Münchener - Tiroler Wintererbse (84)	9	46	12	34		
	840/2			28	121	26	95		
641	941/1	P1 598077	Grapper	18	80	14	66		
	841/2			34	148	30	118		
142	842/1	PI 517922	D29-1-2	4	27	11	16		
	842/2			41	225	32	194		
843	843/1	P1517923	D14-5-10	7	20	10	10		
B44	844/1	PI 517926	D150-4-14	23	100	6	94	mag szine fekete	
	844/2			20	88	46	42		
145	045/3	P1517924	D59-5-6-3Y	23	94	47	47		
147	847/1	21 618628	MILROSE	32	139	35	104		
	847/2			12	44	15	29		
	847/3			16	61	1.3	48		
149	849/1	21 574505	COMMON AUSTRIAN WINTER	37	151	39	112		
	849/2			20	97	49	48		
850	850/1	PI 639976 PSP	SINGLE PLANT SELECTION FROM PI 639976	43	235	83	152		
	850/2			25	120	35	85		
	850/3			12	50	16	34		
151	851/1	W6 12713	MELROSE WINTER	12	45	14	31		
	851/2		m szf.eredmények 2017. Ovogház bor	14	67	35	31		

STEP 3 – in the laboratory


QUALITY TRAITS (protein content, amino acid profile and tripsin inhibitor analysis)


Fast analysis



STEP 4 – in the laboratory

Genetic diversity analysis and QTL analysis

Marker assisted selection

STEP 5 – agronomy

THANK YOU FOR YOUR KIND ATTENTION!

tar.melinda@noko.naik.hu

General contact information

Website: www.true-project.eu

Email: info@true-project.eu

Facebook/Twitter: @TrueLegumes

TRansition paths to sUstainable legume-based systems in Europe (TRUE) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727973

