Turning organic clover grass into a sustainable source of feed protein

Erik Fog

SEGES Organic Innovation

TRUE-project workshop 07-05-2019

Scope of activities

Vete

Nature & the environment

CROPS & ROUGHAGE

Buildings & machinery

Agricultural economics

Training and advisory services Management other Livestock:

cattle, pigs, poultry

Legal matters & tax

Digital tools for management and documentation

RESEARCH TRIALS & ANALYSIS WITHIN ALL DISCIPLINES

SEGES is the bridge-builder between research and practical farming

Why proteins from grass are so interesting - changing annual crops into grass land

- EU animal production is largely dependent on imported proteins (mainly soya).
 - EU report on the development of plant proteins in Europe (November 2018).
- The climate load from animal production has to be reduced more carbon sequestration in grass.
- Less nitrate leaching from grassland
 - Danish environmental programs for coastal waters. Report suggest 25 % of land in grass for protein production.
- Difficult to supply organic pig and poultry with organic and locally produced proteins.
 Combined with nitrogen deficiency in organic plant production.
 - Growing demand for organic products.
- Better conditions for insects and wildlife / higher biodiversity.

High protein yields in legume rich forage

Crop	Yield (ton DM / ha)	Protein Kg / ha	Lysine Kg / ha	Methionine Kg / ha
Grass – clover mixture	13	2600	200	90
Alfalfa	12	2600	200	90
Peas	6	1300	92	13
Field bean	6	1500	92	11
Soy-bean (US)	3	1050	65	14

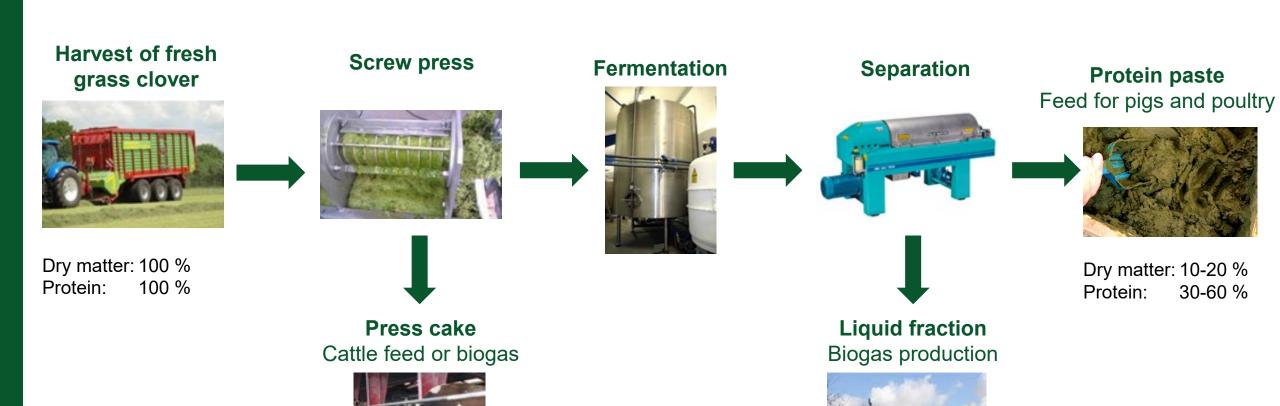
Modified from S. Krogh Jensen, Aarhus University

Attractive amino acid composition in grass protein

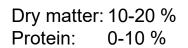
	Field pea	Faba beans	Lupin	GC conc.	Soya		
Protein, % of dry matter							
	24	29	34	40	40		
Amino acids, % of protein							
Cystine	1,4	1,2	1,5	0,6	1,5		
Lysine	7,2	6,3	4,7	5,9	6,2		
Methionine	1,0	0,8	0,7	2,0	1,4		

(SEGES)

Bio-refinery as improvement of organic production



Biogas from residues and household waste Bio-energy and nutrient recycling

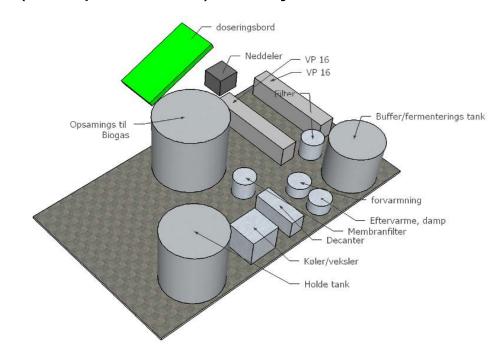


The biorefining process and mass flow

SEGES

Dry matter: 50-70 % Protein: 40-60 %

Harvest technique is important for protein yield and quality



Danish research and innovation projects on grass proteins

• Biobase: A pilot plant for green biorefinery has been established at Aarhus University, Foulum.

Expanding in 2019 to demonstration scale
 (10 x pilot scale) – Project: Grønbioraf

Danish research and innovation projects on grass proteins

- **OrganoFinery**: Developing a concept for grass protein supply for organic animals combined with biogas production and digestate fertilizer for organic crops
- **BioValue**: Broad research platform on biorefinery

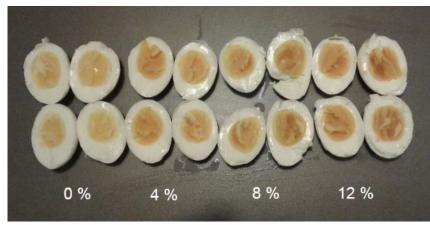
Mutual big scale trials with grass protein production for feeding trials.

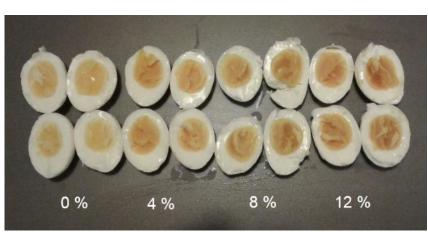
Danish research and innovation projects on grass proteins

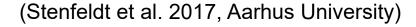
- MultiPlant: Developing a multi species concept of forage for grass protein and biogas.
- **SuperGrassPork**: Feed value of grass protein for pigs and further development of the biorefining process.
- **GreenEggs**: Egg quality and production on grass protein combined with green leaves from willows in the hen yard.
- InnoGrass: Refining grass protein concentrate into food grade protein.

Danish implementation projects on grass proteins

- Grass Protein Factory: A Danish consortium setting up a factory concept for grass protein production. Including Aarhus University, engineering company, machinery suppliers, feed company and farmers.
- Biomass Protein: A project with similar goals.
- Bioraf-Business: Optimizing grass supply and business plans.






Feed value – Grass-clover protein concentrate

- Hens (OrganoFinery)
 - Feed with 4, 8 or 12 percent grass protein concentrate gave the same egg yield as the control feed. – And more yellow yolks.

Feed value – Grass-clover protein concentrate

- Chicken (MultiPlant)
 - Up to 13 % of crude protein (8 % protein concentrate) can come from grass protein without influencing the growth rate. (Trial with relatively low protein concentration in test feed)
 - Yellow pigments from the grass embedded in the chickens.
 - Higher levels of omega-3 fatty acids in chicken fat with higher levels of grass protein in feed.

(L. Stødkilde, Aarhus University)

Feed value – Grass-clover protein concentrate

- Pigs (Biobase & Feed-a-gene / SuperGrassPork)
 - Pigs had good appetite to feed with grass protein.
 - The protein digestibility of protein from test feed with low protein content (35 % crude protein) was lower than in soy-concentrate.
 - Expected to be better in grass-clover protein concentrate with higher protein content.
 - Feeding trial with slaughter pigs started November 2018. Test feed (48 % protein in grass concentrate) showed no negative effects on appetite, growth and feed utilization with up to 15 % grass concentrate in the feed.

(L. Stødkilde, Aarhus University)

Pork from grass protein taste splendid

Documented when tasting pork from the test pigs.

Feed value – Press cake from grass-clover protein production

- Milking cows (BioValue)
 - Test feeding with press cake compared to grass-clover silage.
 - Lower dry matter content and higher fiber content in the press cake compared to the grass-clover silage.
 - Good appetite to the press cake silage, higher in vivo digestibility, higher feed efficiency and a higher milk yield with press cake.

(Vinni K Damborg phd work, Aarhus University)

Grass protein and biodiversity

- Project MultiPlant has tested different mixtures of grass, legumes and forbs.
 - Similar dry matter yield and even higher biogas yield in mixtures with forbs.
 - Nitrogen fixation follows the amount of legumes.
 - Different plant species promote different insect species.

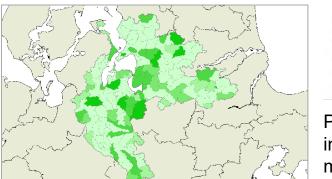
J. Eriksen, Aarhus University

Economy in green biorefineryonly profitable in organic farming

	Conventional (k-DKK / year)	Non- GMO (k-DKK / year)	Organic (k-DKK / year)
Total income	22,078	26,423	31,095
Total costs	29,780	29,781	29,730
Result	-7,702	-3,358	1,365

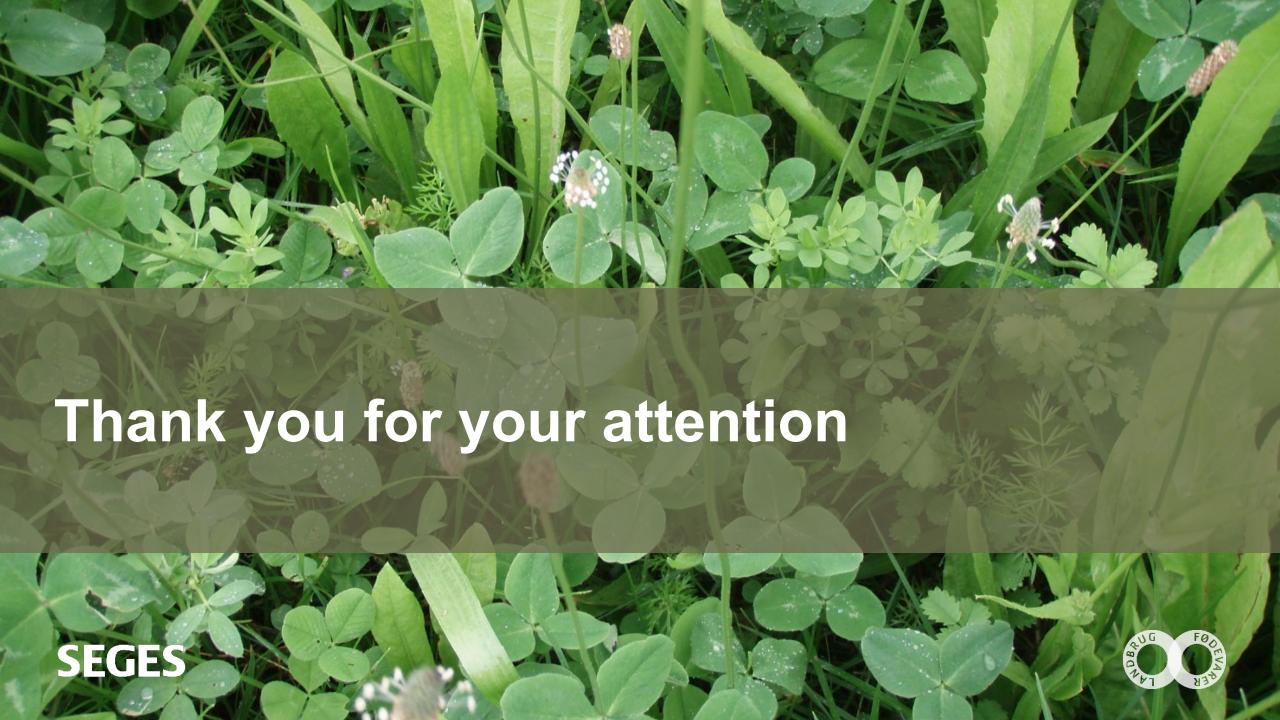
Model calculation on a biorefinery plant processing 20,000 tons DM grass-clover per year and producing 3,600 tons dried protein concentrate.

Source: M. Gylling (2018), Copenhagen University, IFRO.



Great perspectives in grass land for biorefinery

- Prospect for commercial green biorefinery and increased conversion to organic farming
 - Especially in areas with few cattle and combined with biogas production.
- Next step: Grass protein for human consumption
- Environmental benefits
 - Less nitrate leaching, higher biodiversity
- Greenhouse gas mitigation
 - More carbon sequestration in the soil (humus)



Pct. area converted into grass to minimalize nitrate leaching

SEGES

